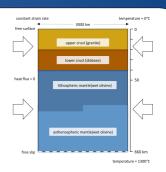


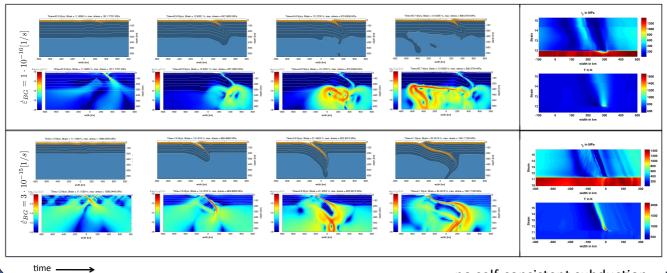
Shear heating and subduction initiation

Marcel Thielmann, Boris Kaus Geophysical Fluid Dynamics, ETH Zurich

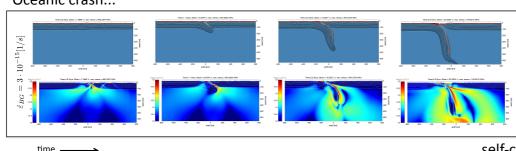


Methodology

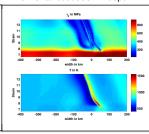
- numerical modelling (using the FE-Code MILAMIN_VEP)
- test the range of parameters that lead to localization and subduction
- compare results to previous work (here: Crameri and Kaus (2010))


Model Setup

- visco-elasto-plastic rheology
- thickness of lithosphere Tdependent
- Resolution: 2 km x 2 km in the
- middle and close to the surface quadratic elements (Q₂P₋₁)
- regular remeshing
- alternatively oceanic crust (wet quartzitic, plagioclase)

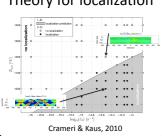

Contintents collide...

horizontal cut at 50 km depth

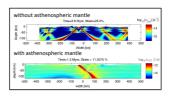


... no self-consistent subduction

Oceanic crash...



horizontal cut at 30 km depth



... self-consistent subduction

Theory for localization

Mantle influence?

Conclusions

- lithospheric shear zones do not necessarily result in subduction zones
- small scale convection inhibits subduction initiation
- density of crustal layers is crucial for subduction initiation
- localization occurs earlier than in Crameri and Kaus (effect of underlying mantle)
- temperature increase and stress drops are large
- decay time of extreme peaks is relatively low (depends) on setting)