3-2

Basics: accessing SAC functionality and data from
external programs

Automating SAC processing with shell scripts
Accessing SAC data from Fortran with the sacio library
Accessing SAC data from MATLAB

SAC from external programs

Even with macros, SAC inevitably will not be able (nor is
designed) to implement every possible function or
methodology one might wish to apply to seismic data

SACs macro language has limits, and many things are not
possible which are trivial in scripts or compiled languages

External access to SAC is in two main ways; (a) running
SAC itself from some sort of control environment, and (b)
loading, modifying and writing SAC data in external
programs unconnected to SAC

We will look at each of these in turn.

3-2

i. Basics: accessing SAC functionality and data from
external programs

ii. Automating SAC processing with shell scripts
iii. Accessing SAC data from Fortran with the sacio library
iv. Accessing SAC data from MATLAB

Calling SAC from shell scripts

Shell scripts (similarly, batch files in Windows systems) are
sets of commands interpreted by the operating system

They can run both system commands and executable
codes (like SAC)

Shell scripts also enable basic programming constructs like
conditionals and loops

They can be used to provide a higher level of SAC
automation than is possible from within SAC using macros

SAC default macro

e SAC automation is made possible by the ability for the
user to specify a macro which SAC will execute when it
starts:

$ sac mymacro

starts SAC, which then runs the command(s) in the macro
mymacro

e Ashell script can construct these macros on the fly, so
each time SAC is executed (say in a loop) a new macro can
be used

Example SAC automation script

#!/bin/csh

Script to demonstrate automated running of SAC.
#

unalias sac # prevent any aliases colliding

set loop length
set n =5

run loop
@1 =1
while ($i <= $n) # start of loop

build up a SAC macro

echo "funcgen seismogram" > /tmp/mymacro
echo "mul " $i >> /tmp/mymacro

echo "w myfile."$i >> /tmp/mymacro

echo "quit" >> /tmp/mymacro

run SAC with the macro
sac /tmp/mymacro

@ i =% +1
end # end of loop

end of script

SAC automation

Automation in this fashion is a handy way of accessing
SAC functionality from other programs

Set up large SAC batch jobs; possible to use for parallel
processing in SAC

Not very efficient — requires a lot of extra processing
effort starting and quitting SAC. Shell scripts are much
(much!) slower than compiled code, and only provided
fairly limited programming functionality

For a lot of applications this does not matter!

3-2

i. Basics: accessing SAC functionality and data from
external programs

ii. Automating SAC processing with shell scripts
iii. Accessing SAC data from Fortran with the sacio library
iv. Accessing SAC data from MATLAB

Externally processing SAC data

Other model is to process SAC data inside an external
compiled program

This enables the addition of processing not available in
SAC — obviously in research seismology this is not an
uncommon occurrence!

(Probably) the most commonly used programming
language in Science is Fortran. Also, a huge amount of
‘legacy’ code exists.

A library of data access functions for Fortran (and C) are
distributed with SAC

Enables easy reading and writing of SAC files, allows
access to headers

Linking FORTRAN to the sacio library

e Fortran codes using the sacio library routines must be
linked to the sacio.a library, e.g.:

$ gfortran -o myprog myprog.f90 /usr/local/lib/sacio.a

e Problems can arise when trying to link 64-bit programs to
a 32-bit library (for example, that distributed with
MacSAC)

e To circumvent this, compile your program as 32-bit:

$ gfortran -m32 -o myprog myprog.f90 /usr/local/lib/sacio.a

sacio library interaction model

User program

Read file

Library

N

Library read

Disk

Trace data

Header

Trace data <€

Get header value

Header

Header
|

H

Set header value :

Trace data

Write file

Header

Trace data

Header

Library write

Trace data

Header

Reading SAC files

e Subroutine rsacl reads SAC time-series files:

INPUT ARGUMENTS:

KNAME :

Name of disk file to read. [c]
The name should be blank filled.
Size of YARRAY. [i]

OUTPUT ARGUMENTS:

YARRAY :
NLEN:

BEG:
DEL:
NERR:

Contains the data from the file. [fa]

Number of data points read. [i]

Will be less than or equal to MAX.

Beginning value of independent variable. [f]

Sampling interval of the independent variable.

Error return flag 0 if no error occurred. [1i]
Possible values for this subroutine are:
= 801 if file is not evenly spaced.

[f]

= -803 if number of points in file is greater than MAX.

In this case, the first MAX points are read.

e Only minimal header information is returned — header of
the last trace read is stored in the library

Getting headers

e Subroutine getfhv fetches (floating point) header values
for the last trace read by the library

INPUT ARGUMENTS:
KNAME : Name of header field to get. [c]

* OUTPUT ARGUMENTS:

* FVALUE: Value of header field from current SAC data file. [f]
* NERR: Error flag. Set to O if no error occurred. [1]

* = 1336 Header variable is undefined.

* = 1337 Header variable does not exist.

e Equivalent routines fetch integer (getihv), character
(getkhv) and logical (getlhv) headers.

Setting headers

e Subroutine setfhv sets (floating point) header values for
the current header stored in the library

* *

* X %

INPUT ARGUMENTS:
KNAME : Name of header field to set. [cC]
FVALUE: New value of header field. [f]

OUTPUT ARGUMENTS:
NERR: Error flag. Set to O if no error occurred. [1]
= 1337 Header field does not exist.

e Equivalent routines set integer (setihv), character (setkhv)
and logical (setlhv) headers.

Writing SAC files

e Two different approaches to writing files:

1. Output a file with minimal header information
Requires no set up
Any previous trace information is lost

Useful for temporary or QC files, files to which the header
information no longer applies

2. Output a file with a complete header

Need to either set up header, or have one from a previously
read trace

Useful for when program is a processing step

Writing SAC files: method 1

e Command wsacl writes out a file with a minimal header:

INPUT ARGUMENTS:
KNAME: Name of disk file to write. [C]
The name should be blank filled.
YARRAY: Array containing the dependent variable. [fa]
NLEN: Length of YARRAY. [i]
BEG: Beginning value of the independent variable. [f]
DEL: Sampling interval of the independent variable. [f]

OUTPUT ARGUMENTS:
NERR: Error return flag, 0 if no error occurred. [1]

Writing SAC files: method 2

e Command wsacO writes out a file with the current header:

INPUT ARGUMENTS:
KNAME: Name of disk file to write. [C]
The name should be blank filled.
XARRAY: Array containing independent variable. [fa]
This 1is not used if the data is evenly spaced.
YARRAY: Array containing dependent variable. [fa]

OUTPUT ARGUMENTS:
NERR: Error return flag 0 if no error occurred. [1i]

e If thereis no current header (for example, if the trace is
being generated by the program) then a new (empty)
header must be generated with a call to newhdr, and the
required variables set with set*hv calls

Example

/

program to double amplitudes in files recorded before 2005
program correct pre2005

implicit none

integer, parameter :: nmax = 10000

real data(nmax) ,hbeg,dt

integer nzyear,npts,nerr,ip

character fn*80,stnm*8

read trace
fn = "SWAV.BHN'
call rsacl(fn,data,npts,beg,dt,nmax,nerr)

1f seismogram is pre-2005, double amplitudes
call getnhv('NZYEAR',nzyear,nerr)
if (nzyear < 2005) then
do ip=1,npts
data(ip) = data(ip) * 2.0
enddo
endif

flag fixed in a header
call setkhv('KUSERO', 'FIXED ‘,nerr)

write back the file, using the header currently in memory
call wsacO(fn,data,data,nerr)
stop

end program correct pre2005

FOTRAN9O0 alternative

e The F90sac library is an alternative to the standard sacio
library which uses FORTRAN9O constructs to provide a
more object-oriented approach to handling SAC files

e Traces are treated as structures, with header and trace
being fields
e This makes multiple traces much easier to handle

program simplef90

use f90sac ! use the f90sac module
implicit none

type (SACTrace) :: tr

fname = 'SWAV.BHE'
call f90sac readtrace(fname,tr)

tr % to0 = 275. ;

tr % kt® = 'NewPick'

tr % trace(:) = 0.0

call f90sac writetrace(fname,tr)

end program simple

iv.

3-2

Basics: accessing SAC functionality and data from
external programs

Automating SAC processing with shell scripts
Accessing SAC data from Fortran with the sacio library

Accessing SAC data from MATLAB and beyond

Using SAC data in other languages

e Read and write routines also exist in other languages

e MATLAB and Python routines are included in the API
subdirectory in the software distribution

* Enables the use of, e.g., graphical/processing capabilities:

% read traces

tr = msac _mread('*.BHE")

A = [tr(:).trace]

T = [tr(:).time]

for itr = 1:1length(tr), D(:,itr) = tr(itr).gcarc; , end

% sort matrices by epicentral distance
[d,ind] = sort([tr(:).gcarc])

AS = A(:,1ind)
TS = T(:,ind)
DS = D(:,1ind)

% plot surface
h=surf (DS, TS,AS, 'LineStyle', 'none');

Using SAC data in other languages

