Lesson 3-1: SAC Macros

SAC has a facility like Unix shell scripts or
Windows .bat files.

Repeated or commonly used sequences of
commands can be stored in a file and invoked
by file name.

Macro files can have optional parameters and
can use variables internally like programs.

SAC command to invoke a macro is MACRO or M

SAC> M TTSAC :;* Invoke macro in file named TTSAC




Macro files

Text files, not .rtf or .doc

No particular file suffix required (no .txt or .m),
so optional use as to taste

Edit file with usual text editors (TextEdit,
BBEditLite, vi, nedit, pico)

Lines contain SAC commands or small set of
macro commands only recognized in macro files

Macro commands begin with “$” to distinguish



Example

e Hello macro

— enter following text in a file called Hello in
your working directory:

MESSAGE “The macro is starting ..”
$RUN cat -

Hello, World!

$ENDRUN

MESSAGE “.. and now it is finished.”

— Invoke macro using MACRO command

SAC> M Hello

— SAC commands used (MESSAGE writes a
message to the user); MACRO command used

(SRUN runs the program “cat” with input up
to SENDRUN)



My result ...

SAC> sc vi Hello :* Use vi command to create file
SAC> m Hello :* Invoke

The macro is starting
Hello, World!
and now it is finished.

SAC>




Seeing macros operate

Use SAC command ECHO ON / ECHO OFF

Each line is echoed as it is retrieved from
the macro file

Each line also echoed after macro
variables are substituted into the text

Useful for debugging / developing
macros



My result with ECHO ON ...

SAC> echo on ;¥ Turn on macro line echoing
SAC> m Hello ; * Invoke
m Hello

MESSAGE "The macro is starting ..."
The macro is starting ...

$RUN cat -

Hello, World!

$ENDRUN
Hello, World!

MESSAGE "... and now it is finished."
... and now it is finished.
SAC>

e Lines in red are echoed before processing
 Even command lines are repeated

 Lines with macro variable substitutions
will be prefixed with ==> (none seen
here)




Macro searches

 Macro files searched for in particular directories,
and in particular order:

— current directory (where SAC run from)
— directories specifically indicated to SAC
— default, built-in macro directory

e Special macro search directories designated with
SETMACRO command:

SAC> SETMACRO /U/kit/sacmacro ;* Set search path
SAC> SETMACRO MORE /tmp ;¥ Add another path element

SAC> * Macro search path now is current directory,
SAC> * /U/kit/sacmacro, /tmp, and default built-in macros.

e Commonly used in SAC startup files




Conditional commands in macros

e IF / ENDIF and IF / ELSE / ENDIF
— Basic conditional commands

e IF /| ELSEIF / ELSEIF / ELSE / ENDIF
— Select one case from many
— Similar to C switch, shell case, Fortran if

e DO / ENDDO and WHILE / ENDDO
— Basic looping constructs



Variables in macros

e Three types of variables:
— Blackboard variables - reference syntax $x%
— Macro variables - reference syntax $x$
— File variables - reference syntax &n, X&

* Blackboard variable properties

— Global in scope (can be referred to on
command line and in macros)

— User can set and retrieve values

e Macro variables
— Local in scope (only exist inside a macro)
— User can retrieve values but not settable



Variables in macros

 File variables

— Global in scope but local to each SAC trace in
memory

— Syntax &n, X& refers to value X in file n (n can
be a file number or file name)

— User can retrieve values only

— Names (here, X) restricted to file header
variable names



Setting variables in macros

e Blackboard most commonly used
e SETBB command sets value, %...% uses value

SAC>
SAC>

SETBB x “hello” ;* Set
MESSAGE “I said %x% to

I said hello to you!

X to character string “hello”

you!” ;* value of x substituted

« Numeric example

SAC>
SAC>
SAC>
SAC>

sum

SETBB sum 0O ;* Set sum
SETBB sum (%sum% + 1)
SETBB sum (%sum% + 1)
MESSAGE “sum 1is %sum%”

is 2.000000

to value zero
:* increment sum

:* value of sum substituted




Unsetting variables in macros
(and elsewhere)

* Blackboard variables global in scope, so those
used in macros hang around forever

« UNSETBB command expunges definition

SAC> SETBB x “hello” ;* Set x to character string “hello”
SAC> MESSAGE “I said %x% to you!” ;* value of x substituted
I said hello to you!
SAC> UNSETBB x ;¥ unset
SAC> MESSAGE “I said %x% to you!” ;* x forgotten
ERROR 1201: Could not find VARS variable blackboard X

SAC>* No longer insistent, it seems




Expressions

Always appear inside parentheses (...)

Can appear anywhere

Can be nested

Can be numeric or character valued

Numeric expressions
—(x+y)(x-y),(x*y),(x/y), xX*y)

Function expressions (names are case
insensitive; here x is an arbitrary number)

— (SORT Xx), (EXP X), (ALOG X), (POWER X), (ALOG10
X)

— (SINE X), (COSINE X), (TANGENT X), (ARCSINE
X), etc.



More expressions

 Miscellaneous functions (a, b, ¢, x numbers)
— (MINIMUMa b c...), (MAXIMUMabc...))
— (INTEGER X), (ABSOLUTE X)
— (P1)
— (STATUS NFILES) number of files in SAC
memory
 Time series query functions

— (GETTIME X) returns time in each file where
value of x is encountered

— (GETTIME MAX) returns time where maximum
value is found

— (GETVAL y) returns value in each file at time y
— (GETVAL FILE ny) same, but only in file n



Still more expressions

e Character manipulation expressions

— (SUBSTRING m n s) return characters m to n in
character string s (1 is start, END is end)

— (CHANGE x y S) change string x to y in string s
— (DELETE x S) deletes string x in string s

— (BEFORE Xx S) returns all of string s up to x

— (REPLY X) type X on terminal and return reply

— (ITEM n s) return blank-delimited item n from
string s

e see HELP EXPRESSIONS for full list



Still more expressions

 Header selection expressions

— (HDRVAL h op X op v ...) queries header
variable h of all files in memory and compares
using op with value x and then op with y; all
successful values returned.

Op can be LT LE EQ GE GT NE AZ PM
AZ X PMy means azimuth is x=xvy; circular
comparison done

— (HDRNUM h op X op ¥ ...) queries header like
HDRVAL; all successful file numbers returned.




Still more expressions

e HDRVAL / HDRNUM examples
— 4 files in memory:

SAC> 1h evdp
FILE: /tmp/ex-1

evdp = 10.0
FILE: /tmp/ex-2

evdp = 50.0
FILE: /tmp/ex-3

FILE: /tmp/ex-4

evdp

I
(@)
S
(O]
(O]

SAC> message "(hdrval evdp ge 200)"

250. 640.

SAC> message "(hdrnum evdp ge 200)"

34

SAC> * files 3 and 4 in list have evdp > 200
SAC> message "(hdrnum evdp gt 35 le 200)"

2

SAC> * only file 2 has evdp > 35 and <= 200




Compounded expressions

« SAC processes expressions in three stages:
— expansion of blackboard variables %..% and macro

variables $..$

— expansion of file header variables
— evaluation of functions
e Blackboard or macro variables can be inside file

header variables

SAC> setbb x 1

SAC> message "File %x% evd
File 1 evdp is 10.0

SAC>

*

p is &%x%,evdp&"

set x to 1
%X% is inside &..&

 Expressions nestable

SAC> setbb x 1

SAC> message "sqrt (%x% +
sqrt 2.000000 is 1.414214
SAC>

*

%x%) is (sqrt (%x% +

set x to 1
%X%) )"




Escape character @

* Prevent interpretation of (xxx) as expression or
function

* Prevent interpretation of $xx%, $xx$, &xx& as
macro variables

 Prefix any dangerous character with @ to inhibit
Interpretation:

SAC> message "This is a 7@% solution NOT a bb var"
This is a 7% solution NOT a bb var

SAC> message "This is a 7% solution NOT a bb var"
ERROR 1201: Could not find VARS variable blackboard

SAC>




Conditional commands:
conditions

e Relational conditions used in IF / ELSEIF /
WHILE commands

e Syntax is el op e’

— el, e2 are numerical or character
expressions

— op is relational operator:
— EQ (equal), NE (not equal)
— LT (less than), LE (less than or equal)

— GT (greater than), GE (greater than or
equal)
— (inspired by Fortran syntax)




Conditional commands:
conditions

 Examples:

if “%x%” EQ ‘debug’ ;¥ quotes 1in case string contains blanks
setbb debug 1
endif

* Below, reply 1is prefixed with to recognize no response

* -- a blank line typed for the reply
setbb ans “ (reply ‘Enter yes or no:’)” ;¥ prompt and get answer
if “%ans%” eq “_yes”
message “response is yes”
elseif “%ans%” eq “ _no”
message “response is no”
elseif “%ans%” eq “_”
message “nothing typed”
else
message “invalid response: %ans%”

endif




Macro suspension and resume

« Set of macro commands to control macro
operations:

— SKILL - terminate macro

— STERMINAL - suspend macro for a while and
take typed commands from keyboard

— SRESUME - resume running of suspended
macro



Interacting with your OS

e SYSTEMCOMMAND is the key command

— SAC assembles a command and optionally
retains output from the command

— Example: Using UNIX date command

SAC> systemcommand cat /tmp/demosc

message "Time now is:"
systemcommand date ;¥ Invoke date command

SAC> m /tmp/demosc

Time now 1is:
Thu Jun 17 09:43:27 BST 2010

SAC>

e SCis abbreviation for SYSTEMCOMMAND
— will see often in coming material




Conditional commands:
looping

e Example: WHILE condition / ENDDO

SAC> sc cat /tmp/xample
setbb x 1
while %x% LT 4
message "X 1s now %x%"
setbb x (%x% + 1)
enddo

SAC> m /tmp/xample

X is now 1

X is now 2.000000

X is now 3.000000

SAC>* Note how arithmetic adds trailing zeroes




Conditional command and macro
suspension example

message "Fee fie foe fum" "I smell the blood of an Englishman”
message "What should I do now?"

* Ask for response and validate
setbb ok no ;¥ Sets value of bb var ok
while %ok% EQ no ;¥ Tests value of bb var ok
setbb ans " (reply 'respond kill or pause:')" ;* Prompt keyboard
if "%ans%" EQ _kill
setbb ok yes
elseif "%ans%" EQ _pause
setbb ok yes
else
message "Invalid response”
endif
enddo

* Act on response

if "%ans%" EQ kill
message "OK, quitting
$KILL

endif

if "%ans%" EQ _pause
message "Type @$RESUME to resume" ;* Macro will be suspended
$TERMINAL
message "Resuming macro ..." ;¥ Resumed at this point

endif

message "If he 1is alive or if he is dead"

message "I'll crush his bones to make my bread"

:*¥ Macro will terminate




Conditional commands:
looping

« Example: WHILE READ bb Xy ... Z / ENDDO

SAC> sc cat /tmp/xample
setbb inp "one two three and the rest"

while read inp a b c d ;* bb variable read is %inp%, $a$%$, $b$
message "a is %$ad" ;¥ note macro variable, not bb variable
message "b is $b$"
message "c is $c$"
message "and d is '$d$'"

enddo

SAC> m /tmp/xample

a is one

b is two

C is three

and d is 'and the rest'
SAC>

e Typical use is to put Unix command/program output
iInto bb variable and process it line-by-line

— see SYSTEMCOMMAND for details




Conditional commands:
looping
e DO/ ENDDO

— Gives ability to loop over finite set of values

— Can loop over implicit or explicit list of values
e Implicit (numeric):
—~ DOVFROMXTOY/DOVFROMX TOYBY Z
» V IS macro variable, x, y, z are numeric expressions
» V successively takes on implied sequence of values
« Explicit (textual):
—~ DOVLISTabc...
» macro variable v takes value a, then b, then c, ...
—~ DOVWILDab.../DOVWILD DIR dab...

» macro variable v takes on names of files that match
wild card expression a, then b, ...

e BREAK
— Leaves DO or WHILE loop early



Conditional commands:
looping

e Example: DO .. FROM / ENDDO

SAC> sc cat /tmp/dofrom
setbb fib 1.0 prefib 0

do i from 0 to 10 ;¥ Loop macro variable value is $i$%
message "Fibonacci number $i$ is (BEFORE . %fib%)"
setbb newfib (%fib% + %prefib%) ;¥ Next Fibonacci num

setbb prefib %fib% ; setbb fib %newfib% ;* Remember previous two
enddo

SAC> m /tmp/dofrom

Fibonacci number 0 is 1
Fibonacci number 1 is 1
Fibonacci number 2 is 2
Fibonacci number 3 1is 3
Fibonacci number 4 is 5
Fibonacci number 5 is 8
Fibonacci number 6 1is 13
Fibonacci number 7 is 21
Fibonacci number 8 is 34
Fibonacci number 9 is 55

Fibonacci number 10 is 89
SAC>* Tip: using (BEFORE . x) function strips trailing zeroes




Conditional commands:
looping

e Example: DO .. FROM / ENDDO using BREAK

SAC> sc cat /tmp/dobreak
setbb num "(reply 'Enter number:')"

do pow from 1 to 32 ;¥ Try powers of two
setbb v (2 ** $pow$)
it %v% GE %num% ;¥ Test present one
break ;¥ Equals or exceeds number
endif
enddo

message "Power of 2 larger than %num% is 2**$pow$ or %v%"
SAC>

SAC> m /tmp/dobreak

Enter number:2096

Power of 2 larger than 2096 is 2**12 or 4096.000
SAC>




Conditional commands:
looping

e Example: DO ..LIST / ENDDO

SAC> sc cat /tmp/dolist
do hdr 1list stla stlo evla evlo evdp scale ;* Header fields to check

if UNDEFINED EQ "&1,$hdr$&" ;¥ Check if set
message "$hdr$ not set in file header"
endif
enddo
SAC>
SAC> funcgen seismogram ;¥ Built-in seismic data

SAC> m /tmp/dolist
scale not set in file header
SAC>* SCALE 1is rarely used in file headers




Parameters to macros

 Macros can take parameters, like shell
scripts

 Parameters can be positional or keyword

— positional example: 1st parameter is name,
2nd is frequency

SAC> m example KEVO.BHZ 2.5

— keyword example: keyword FILE identifies
name, FREQ identifies frequency

SAC> m example file KEVO.BHZ freq 2.5
SAC> m example freq 2.5 file KEVO.BHZ ;* keyword order independent




Parameters to macros

 Parameters may be required or optional

— Required parameters, if not provided, are
prompted for when used

— Optional parameters have defaults given in
the macro

* Positional parameters simplest
— Values obtained in macro using $18, $25, ...

SAC> sc cat /tmp/mppos ;¥ Macro is file /tmp/mppos
* Macro user provides two parameters: SAC file and frequency
message "File name 1is $1%; frequency is $29%"

read $19% ;* Read SAC file

rmean; rtrend terse; taper w 0.05 ;¥ Prepare for filtering
lowpass corner $2% npoles 2 passes 2 ;¥ Filter corner frequency
SAC> m /tmp/mppos /tmp/ex-1 2 ;¥ Macro used here

File name is /tmp/ex-1; frequency is 2
SAC>




Parameters to macros

 Prompt if required parameter missing:

SAC> m /tmp/mppos /tmp/ex-1 ; ¥ Second parameter missing
2?7 5
File name is /tmp/ex-1; frequency 1is 5

SAC>* Prompt “2?” requests value for second parameter: 5 given

* Optional parameters indicated by
providing default value using SDEFAULT

command:
* Macro user provides two parameters: file and frequency
$default 2 5 ;¥ 2nd par. default 5

message "File name is $1%; frequency is $2%"

read $1%
rmean; rtrend terse; taper w 0.05
lowpass corner $2% npoles 2 passes 2




Parameters to macros

 Examples using defaulting:

* Macro user provides two parameters: file and frequency
$default 2 5 ;¥ 2nd par. default 5
message "File name is $1%; frequency is $2%"

read $1%
rmean; rtrend terse; taper w 0.05
lowpass corner $2% npoles 2 passes 2

SAC> m /tmp/mppos /tmp/ex-1 ;¥ Second par omitted
File name is /tmp/ex-1; frequency is 5

SAC> m /tmp/mppos ;¥ Both pars omitted
1?7 /tmp/ex-1
File name is /tmp/ex-1; frequency is 5

SAC>* Prompt for first parameter which lacks a default
SAC> m /tmp/mppos /tmp/ex-1 1

File name is /tmp/ex-1; frequency is 1
SAC>* Explicit second parameter value overrides default




Parameters to macros

 Keyword parameters are position
independent

— Text following keyword up to next keyword
becomes value for parameter

— Keyword declared with SKEYS command in
macro

SAC> sc cat /tmp/mpkey ;¥ Macro file is /tmp/mpkey
* Macro user provides file xxxx and freq yyyy

$keys file freq

message "File name is $file$; frequency is $freqg$"

read $file$
rmean; rtrend terse; taper w 0.05
lowpass corner $freq$ npoles 2 passes 2

SAC> m /tmp/mpkey file /tmp/ex-1 freq 5
File name is /tmp/ex-1; frequency is 5

SAC>




Parameters to macros

* Missing keyword parameter prompts are
more meaningful

SAC> m /tmp/mpkey file /tmp/ex-1 ;¥ Only one keyword given
freq? 2
File name is /tmp/ex-1; frequency is 2

SAC>

 Keyword parameter defaults given with
SDEFAULT as well

* Macro user provides file xxxx and freq yyyy

$keys file freq

$default freq 5 ;¥ default frequency is 5
message "File name is $file$; frequency is $freqd"

read $file$
rmean; rtrend terse; taper w 0.05
lowpass corner $freq$ npoles 2 passes 2




Macro vs blackboard variables

* Blackboard variables $xxx% set/changed
and used by user
— scope is global

* Macro variables $xxx$ set/changed by
system, used by user

— scope local to macro

— set when MACRO command seen based on
parameters

— set by DO / WHILE commands




Advanced interaction with your OS

e SYSTEMCOMMAND / SC is key command

 Can use system commands and capture their
output inside of SAC

SAC> sc to out date ;¥ send date program output to bb var out

— Example: Capture UNIX date command for
nicer formatting

SAC> sc cat /tmp/demosc
sc to out date ;¥ date output to bb var out
message "Time now is: (ITEM 4 %out®%)" ;* select 4th field in %out%

SAC> m /tmp/demosc
Time now is: 09:51:29
SAC>




Advanced interaction with your OS

e Process multi-line sC output using WHILE READ
loops

 Example: Handling 1s command output

SAC> sc 1s -1 /tmp/do* ;¥ output from 1s command
-rW------- 1 geo-g4 wheel 210 Jun 17 09:18 /tmp/dobreak
-rW------- 1 geo-g4 wheel 179 Jun 17 08:55 /tmp/dofrom
-rW------- 1 geo-g4 wheel 309 Jun 17 10:06 /tmp/doscls

SAC> sc cat /tmp/doscls
sc to lsout 1s -1 /tmp/do* ;¥ output saved in bb var lsout

while read lsout fperm flink fowner fgroup fsize fmm fdd ftt fname
* Field 1 of output [permissions] assigned to fperm
* Field 2 of output [links] assigned to flink
* Field 3 of output [user name] assigned to fuser, etc.
message "File $fname$ size $fsize$"
enddo

SAC> m /tmp/doscls
File /tmp/dobreak size 210
File /tmp/dofrom size 179
File /tmp/doscls size 309




Interacting with your OS through
command input

OS commands invoked in macros can also take
an input stream embedded in the macro

SRUN / SENDRUN macro commands bracket input
lines

Macro variable substitution done on input -
makes it easy to pass information to programs

Examp|61 SAC> sc cat /tmp/dorun

setbb fn /tmp/seismo

do sfx list BHE BHN BHZ ;* cat input file
$RUN cat -

File is %fn%.$sfx$
$ENDRUN

enddo

SAC> m /tmp/dorun ;¥ runs cat 3 times
File is /tmp/seismo.BHE

File is /tmp/seismo.BHN

File is /tmp/seismo.BHZ

SAC>




Interacting with your OS through
command input, fine-tuned

« Copy $SRUN / SENDRUN input to temporary file

* Invoke Unix command with input from
temporary file

* Uses Unix shell features to build temporary file
names:

# echo /tmp/temp$$ # shell changes $$ to unique number
/tmp/temp372
#

— Using SC, have to escape $$ with @ to
prevent macro variable interpretation

SAC> sc echo /tmp/temp@$@$
/tmp/temp41534
SAC>




Example (macro)

sc to scr echo /tmp/temp@%$@%.sh ;¥ Temp script file name %scr%

* Copy text to create a temporary shell script to test file existence
* Note need to use escape characters for shell script syntax.
$run cat - > %scr%
# This shell script reads a file name and checks whether it exists
# It echos the file name and adds "yes" if it exists or "no"
while read fn ; do
test -f \@%fn @&@& echo \@%fn yes || echo \@$fn no
done
$endrun

sc to finp echo /tmp/temp@$@%.in ;* Temp input file name %finp%
setbb pfx /tmp/event
do sfx 1ist BHE BHN BHZ

sc echo %pfx%.%sfx$ >> %finp% ;* Add file name to input file
enddo
sc to inp sh %scr% < %finp% ;¥ Run script on input file
while read inp fn exist ;¥ Process output from script
message "File $fn$ exists? $exist$" ;* Report file existence
enddo

sc rm %scr% %finp% ;¥ Remove temporary files




Example (output)

SAC> m /tmp/ftester
File /tmp/event.BHE exists? no
File /tmp/event.BHN exists? no
File /tmp/event.BHZ exists? no
SAC>

* Could use similar script to verify that
three component data exists for each
event to be studied.




