2-3

Basic array data handling

Array processing

- Array data (i.e., using data from multiple instruments) is increasingly being used in global seismology and is the norm in exploration seismology
- New array facilities like USArray and Japan's hi-net are opening new vistas of understanding
- Multiple instruments allow, among other things
 - Measurement of very subtle signals not visible in a single seismogram
 - Measurement of angles of arrival of waves – improves identification of phases
- SAC's capabilities for handling array data are fairly basic, but useful functionality is still available

The SSS subprocess

- Array processing and plotting is done in the SSS subprogram (start with command sss).
- The traces in current memory in SSS is called the *stack*
- All SSS operations operate on the files currently in the stack
- Any files in memory are automatically added to the stack when SSS is started
- Traces may be added to the stack from file, have properties updated, or be removed from the stack
- Traces to be added to the stack should have their stationevent geometry set correctly, and have the same sampling rate

Adding traces to the stack

- Traces are added from files with command addstack.
- Note, this can only add one file at a time so wildcards are not allowed

```
SAC/SSS> help addstack

SUMMARY:
Add a new file to the stack file list.

SYNTAX:
[A]DD[S]TACK filename [property ...]
```

- properties allow control of the stack. Some useful ones are:
 - delay t : add the file specified with a timeshift t
 - weight w : weight trace by w in the stack (useful for downweighting noisy traces for example)
 - n or r : specify normal or flipped polarity

Changing traces in the stack

 Properties like delay and weight for traces currently in the stack can be modified with the changestack command.

```
SAC/SSS> help changestack

SUMMARY:
Change properties of files currently in the stack file list.

SYNTAX:
[C]HANGE[S]TACK filename|filenumber property {property}
```

 In this filename must be the name of a file currently in memory, or the number of the file (in order of addition)

Deleting traces from the stack

 Remove traces from the stack with the deletestack command.

```
SAC/SSS> help deletestack

SUMMARY:
Deletes one or more files from the stack file list.

SYNTAX:
[D]ELETE[S]TACK filename|filenumber {filename|filenumber...}
```

The command zerostack empties the current stack entirely

Distance and time windows

- Once the stack is populated, in order to plot record sections or make stack calculations time and distance windows are required
- The distance window is set by default (to the span of the data in km), however the time window is not set
- These are set by the timewindow (tw) and distancewindow (dw) commands respectively

SAC/SSS> tw 1200 1400

 The dw command can be made to display a fixed width, and can use degrees instead of km, e.g.,

SAC/SSS> dw fixed 70 80 units degrees

Plotting record sections

 A record section of the current stack can be plotted with the plotrecordsection command.

```
SAC/SSS> help prs

SUMMARY:
Plots a record section of the files in the stack file list.

SYNTAX:
[P]LOT[R]ECORD[S]ECTION [ options ]
```

- This command has a great deal of functionality (including an interactive picking interface), however some basic options include:
 - labels on/off/header: control trace labelling
 - reference on/off: whether a zero line is drawn
 - size s: this defines the scale at which the traces are drawn
- Permanent plots can be produced using the sgf device, as before

Stacking

- Stacking is a standard technique in seismology, and is used extensively in global and particularly exploration contexts
- Stacking is (at its simplest) merely summing many traces together
- The motivation for this is to enhance signal which coherent across the traces, and suppress noise which is not (constructive vs. destructive interference)

Stacking example

Generating stacks

 A linear sum of the current stack can be generated with the sumstack command.

```
SAC/SSS> help sumstack

SUMMARY:
Sums the files in the stack file list.

SYNTAX:
[S]UM[S]STACK [[N]ORMALIZATION ON|OFF]
```

 This will plot a stacked trace, which can be written to disk with the command writestack

```
SAC/SSS> help writestack
SUMMARY:
Writes the stack summation to disk.
SYNTAX:
  [W]RITE[S]TACK [filename]
```

This trace is then a standard SAC trace