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Basic Crystallography - Objectives

Describe the position of atoms in a crystal

Reduce this description to the most compact
form using symmetry operations (Euclidean
mapping — translations, rotations and reflections)

Understand the structure of crystal

Provide methods for calculating the distance
between planes, repeat lengths along directions,
angles between planes and directions and
diffracting power



Plan

Direct space — the real world
Fractional coordinates
Symmetry operations
Lattice planes and directions
Point groups

Crystallographic calculations (structure factor,
angles, d-space, reciprocal lattice, metric
tensor and orthogonal basis)



230 Space Groups

The 230 three-dimensional space groups arranged by crystal systems and point

groups
Crystal Point  Space
system group  groups
Triclinic Pl
1 Pl
Monoclinic P2, P2, C2
m Pm, Pc, Cm, Cc
2/m P2/m, P2,/m, C2/m, P2/c, P24[c, C2/c
Orthorhombic [222 P222, P222y, P2,2,2, P2,2,2,, C222,, C222, F222, 1222,
12,22,
mm?2 Pmm2, Pmc2,, Pec2, Pma2,, Pca2,, Pnc2,, Pmn2,, Pba2,
Pna2,, Pnn2, Cmm2, Cmc2,, Ccc2, Amm2, Abm2, Ama2,
Aba2, Fmm2, Fdd2, 1mm2, 1ba2, lma2
mmm  Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam,
Pccen, Pbem, Pnnm, Pmmn, Pben, Pbea, Pnma, Cmem, Cmca,
Cmmm, Ccem, Cmma, Ceca, Fmmm, ¥ddd, Tmmm, 1bam,
Ibca, Imma
Tetragonal P4, P4y, P4y, P43, 14, 14,
4 P4, 14
4/m P4/m, P4y/m, Pd[n, Pdy[n, 14/m, 14,/a
422 P422, P42,2, P4,22, P4,2,2, P4,22, P4,2,2, P4;22, P432,2,
1422, 14,22
4mm Pdmm, Pdbm, Pd,cm, Pd,nm, Pdce, Pdne, Pd,me, P4rbe,
14mm, 14cm, 14,md, 14,cd
4m P42m, P42c, P42 m, P42ic, PAm2, P4c2, P4b2, P4n2, 14m2,
4c2, 142m, 142d
4/mmm Pa/mmm, P4/mcc, P4d/nbm, P4[nnc, P4/mbm, P4/mnc,
P4/nmm, Pd[ncc, P4dy/mmc, P4y/mcm, Pdy[nbc, Pdy[nnm,
P4,/mbc, Pdymnm, Pdy/nme, Pdy[nem, 14/mmm, 14/mem,
Trigonal- 14,/amd, 14,/acd
hexagonal P3, P3,, P3,, R3
3 P3, R3
P312, P321, P3,12, P3,21, P3,12, P3,;21, R32
3m P3ml, P31m, P3cl, P31c, R3m, R3¢
3m P31m, P31c, P3ml, P3cl, R3m, R3¢
(6] P6, P6,, P6s, P63, P6,, P6,
6 P6
6/m P6/m, P63/m
622 P622, P6,22, P6522, P6,22, P6422, P6522
6mm P6mm, Pécc, P63cm, P6smc
6m P6m2, P6c2, P62m, P62c
6/mmm P6/mmm, P6/mcc, P6s/mem, P63/mmc
Cubic P23, F23, 123, P2,3, 12,3
m3 Pm3, Pn3, Fm3, Fd3, Im3, Pa3, 1a3
432 P432, P4,32, F432, F4,32, 1432, P4;32, P4,32, 14,32
43m P43m, F43m, 143m, P43n, F43c, 143d
m3m  Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm3c, Fd3m, Fd3c,

Im3m, 1a3d

Space groups (and enantiomorphous pairs) that are uniquely determinable from the symmetry of
the diffraction pattern and from systematic absences (see Section 3.13.5) are shown in bold-type.
Point groups without inversion centres or mirror planes are emphasized by boxes.



The direct space

The positions of atoms in crystals is the most
fundamental information we need.

Atoms in crystals physically exist in real or direct
space where the atoms positions are described

relative to an origin, typically at a corner, in 3-D

volume called the “unit cell”.

The 3 axes of the unit cell x, y and z from a right-
handed set with angles alpha (a), beta (B) and
gammal(y) between y-z, x-z and x-y respectively.
The lattice parameters, a, b, ¢ describe the
dimensions of the unit cell along x, y and z.



Unit Cell Fractional Coordinates

101

Location of a point with coordinates x,y,z. Numbers indicate
coordinates of unit cell corners.



Example for alpha-quartz

UNIT CELL DATA
a: 49137 b: 49137 c: 5.4047 A
alpha: 90.000 beta: 90.000 gamma: 120.000 degrees

cell volume: 113.011 A**3
calculated density: 2648.86 kg / m**3

RECIPROCAL UNIT CELL DATA

a*: 0.2350 b*: 0.2350 c*: 0.1850 1/A
alpha*: 90.000 beta*: 90.000 gamma*: 60.000 degrees

Space Group Symbol: P3221

ASYMMETRIC UNIT

label Site Occupancy X 'y z NumlinCell
O 0 1.000 0.4133 0.2672 0.1188 6
T Sil1.000 0.4697 0.0000 0.0000 3

Total of: 9 atoms in the unit cell



Four types of symmetry operation
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Mirror and inversion transformation are
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Space filling patterns

2-D space filling pattern for

n=2,3,4 and 6-fold symmetry for

360°/n rotations, used in

combination with translation,

mirror and inversion to generate

’g;ce)u3p253 D space filling point 2-Fold (180°) 4-Fold (90°)

Note that 5-fold symmetry is

found in quasicrystalline metal /\A/

alloys, but they do not have the

translation periodicity of single

crystals, first observed in 1984.

Do natural quasicrystalline 3-Fold (120°) 6-Fold (60°)
minerals exist ?

Planar figures with 2-, 3-, 4-, or
6-fold symmetry generate geometric patterns
that fill space.



Natural quasicrystal : Al Cu,, Fe,;
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LEFT: Fig. 1 (A) The original khatyrkite-bearing sample used in the study. The lighter-colored material on the exterior contains a mixture of
spinel, augite, and olivine. The dark material consists predominantly of khatyrkite (CuAl,) and cupalite (CuAl) but also includes granules, like the
one in (B), with composition Alg;Cu,,Fe, . The diffraction patterns in Fig. 4 were obtained from the thin region of this granule indicated by the red
dashed circle, an area 0.1 um across. (C) The inverted Fourier transform of the HRTEM image taken from a subregion about 15 nm across displays
a homogeneous, quasiperiodically ordered, fivefold symmetric, real space pattern characteristic of quasicrystals.

RIGHT: Diffraction patterns obtained from natural quasicrystal grain

Luca Bindi, Paul J. Steinhardt, Nan Yao, and Peter J. Lu. "Natural Quasicrystals." Science 324 (2009): 1306-1309.



Diffraction pattern of a decagonal
Al-Co-Ni quasicrystal. A computer
reconstruction of the second layer
from 720 images. Recorded with
monochromatic X-rays (0.873 A) ona
MARRESEARCH imaging plate
detector system at the Swiss—
Norwegian beamline (SNBL) of the
ESRF, Grenoble, France. (By
courtesy of W. Steurer and

M. Estermann.)



X-ray Laue photograph of n
icosahedral Al-Mn—Pd quasicrystal
with fivefold symmetry (Mo

X-ray tube, 50kV, 35mA, 60 mm
crystal-to-detector distance,

16 h exposure time, crystal by
courtesy of Marc deBoisseau).

(By courtesy of W. Steurer.)

%



3D and Stereogram for Cubic
symmetry

¢ = diad; A = triad; @ = tetrad; @ = hexad.



Lattice — planes and directions

+z
[uvw]
Ua+ Vb +Wc
Wc
o) -
+y
Vb (c)

+x

Lattice planes and zone axes. The array of lattice points exposed on the three visible
faces of a parallelepiped whose edges are parallel to those of the unit-cell is displayed in (a) with
solid circles to represent lattice points and thin broken lines parallel to axial directions. Four sets
of lattice planes are indicated by thick solid lines representing the intersection of lattice planes
with the visible faces of the parallelpiped; their Miller indices are | (122), 1l (2T2), Il (210),

IV (010). In (b) the definition of Miller indices is illustrated: the shaded plane (hk/) makes
intercepts a/h, b/k, ¢/l on the x, y, z axes, a, b, ¢ being the lattice repeat along each axis and h, k, /
being integers. In (c) the definition of the zone axis symbol is illustrated: [UVW] is the direction
parallel to the line through the origin and the point Ua, Vb, Wc.




Typical planes and their Miller indices

(Okl)

P (010)
(100)



Typical lattice directions

Lattice
direction
[uvw]




Lattice planes - Graphite [001] axis

Projection of the lattice of graphite down the z-axis on to the xy plane to illustrate
the decrease in the density of lattice points per unit area of lattice planes (hkQ) as their indices
h and k increase. The density of lattice points per unit length in projection decreases from
(010) to (110) to (230).



32 Point Groups

List of the 32 point groups

Crystal systems

Point groups

Laue classes

Lattice
point groups

Non-centro- Centrosymmetric
symmetric
Triclinic 1 1 1 1
Monoclinic 2 m 2/m 2/m 2/m
Orthorhombic 222 mm?2 mmm mmm mmm
Tetragonal [ 4 4 i 4/m 4/m ) T —
1422 4mm, 42m  4/mmm 4/mmm i
Trigonal 3 3 3 | Iy
L 32 3m 3m 3m i
Hexagonal 6 6 6/m 6/m
622 6mm, 62m  6/mmm 6 /mmm | &frmmm
Cubic [ 23 m3 m3 | i
1432 43m m3m m3m i




7 Crystal Symmetry systems

Triclinic. No symmetry other than translational symmetry
Monoclinic. One twofold rotation axis or one mirror plane

Orthorhombic. Three twofold rotation axes or one twofold rotation
axis and two mirror planes

Tetragonal. One fourfold rotation axis
Rhombohedral (also called trigonal). One threefold rotation axis

Hexagonal. One sixfold rotation axis
Cubic (also called isometric). Four threefold rotation axes



Frequency of different point groups

Table Population statistics for the 32 crystallographic point
groups gathered from more than 280,000 chemical compounds.
Inorganic (I) and organic (O) have somewhat different percentages
(data collected by G. Johnson)

| 0 I 0

1 0.67% 1.24% 422 0.40%  0.48%
|71 13.87 19. %J 4mm 0.30 0.09
221 6. 42m 0.82 0.34
m 1.30 1.46 4/mmm 453 0.69
p/m 34.63 4481 6 0.41 0.22
777 3756 TUT3 6 0.07 0.01
mm?2 3.32 3.31 6/m 0.82 0.17
mmm_ 12.07 7.84 622 0.24 0.05
. , 6mm 0.45 0.03
3 1.21 0.58 6m?2 0.41 0.02
32 0.54 0.22 6/mmm  2.82 0.05
3m 0.74 0.22 23 0.44 0.09
3m 3.18 0.25 m3 0.84 0.15
4 0.19 0.25 432 0.13 0.01
4 0.25 0.18 43m 1.42 0.11

4/m 1.17 0.67 Im3m 6.66 0.12 I metals




Examples of 32 point groups

Table Examples of the 32 crystal classes

4/mmm = Dy,
6 =Cg

6 = Cy

6/m = Cep
622 = Dg
6mm = Cgy
6m2 = D3,
6/mmm = Degy,
23=T

m3 =Ty
432=0
43m =Ty

m3m = Oy,

Kaolinite
Copper sulfate
Sucrose
Potassium nitrite
Orthoclase
TIodic acid
Sodium nitrite
Forsterite
Nickel tellurate
Ilmenite
Low-quartz
Lithium niobate
Corundum
Iodosuccinimide
Boron phosphate
Scheelite
Nickel sulfate
Barium titanate
Potassium dihydrogen
phosphate
Rutile
Nepheline
Lead germanate
Apatite
High-quartz
Zincite
Benitoite
Beryl
Sodium chlorate
Pyrite
Manganese
Zincblende
Rocksalt

Al;Sip Os5(OH)4
CuSOq4 - SH,O
Ci2H1201
KNO;
KAISi3Og
HIO3

NaNO,
Mg,SiO4
Ni3TeOg
FeTiO3

SiO,

LiNbO3

Al O3
C4H4INO,
BPO4

CaWO4
NiSO4 - 6H,0
BaTiO3
KH,PO4

TiO; v
NaAlSiO4
Pbs Ge3 (0] 11
Cas(PO4)3F
SiO,

ZnO
BaTiSi309
Be3Al;SigOig
NaClO3
Fe$S;

B-Mn

ZnS

NaCl




Symmetry

The defining property of a crystal is its inherent symmetry, which means that
certain operations result in an atomic configuration identical to the original
configuration. For example, rotating the crystal by 90° or 180° about a certain axis
may leave the crystal unchanged. The crystal is then said to have, respectively, a
fourfold or twofold rotational symmetry about this axis.

In addition to rotational symmetries like this, a crystal may have symmetries in the
form of mirror planes and translational symmetries, and also the so- called
compound symmetries that are a combination of translation and rotation/mirror
symmetries. A full classification of a crystal is achieved when all of these inherent
symmetries of the crystal are identified.

A crystal lattice is conveniently described by its unit cell, a tiny box containing one
or more atoms, which is characterized by its lattice parameters a, b, and c as well
as the angles a, B, and y between them. There may be additional lattice points at
the center of certain faces or at the center of volume within the unit cell. The
positions of the atoms inside the unit cell are described by the set of atomic
positions (x;, v, z;) measured from the origin, a lattice point at the corner of the
unit cell.

There are only seven possible crystal systems that atoms can pack together to
produce an infinite 3-D space lattice in such a way that each lattice point has an
identical environment to that around every other lattice point. The crystal systems
are a grouping of crystal structures according to the axial system used to describe
their lattice.



Example of invariant patterns — 120
and 90° rotations

Two-dimensional lattices with (a) a triad or a hexad, (b) a tetrad perpendicular to the
plane of the lattice.



Lattice

A lattice is an infinite set of points generated by a set of discrete
translation operations. A crystal is made up of one or more atoms
that are repeated at each lattice point.

For minerals, the lattice points contain identical groups of atomes,
called a motif (or basis) of atoms. That is to say, the crystal structure
consists of the same atoms, or motifs, positioned around each and
every lattice point. This group of atoms, therefore, repeats
indefinitely in three dimensions according to the arrangement of
the crystal lattices.

In total, there are 14 lattices that fill the 3-D space, which are the
well-known 14 Bravais lattices. The characteristic rotation and
mirror symmetries of the atoms or motifs are described by the
crystallographic point groups, of which there are 32, and space
groups, of which there are 230.



Direct space — unit cell

* The unit cell may be primitive
containing on one lattice point
referred to the primitive basis, a,

b, c.

* A non-primitive unit cell contains
multiple lattice points referred to
the crystallographic basis, a_, b,
c. by adding lattice nodes at the
center of the unit cell using  ataix
‘centring vectors’. Examples ;
include A,B, and C face centered,
body centered, rhombohedrally
and hexagonally centred.




14 Bravais lattices (or space lattices)
'‘centring vectors’

e Primitive (P). Lattice points on the cell corners only, that
is, at the coordinates (x,y,z) = (0,0,0)

e Body centered (). One additional lattice point at the
center of the cell so that for each atom at (0,0,0) there is

another one at (1/2,1/2,1/2)

e Face centered (F). One additional lattice point at the

center of each of the faces of the cell, that is, there are also
atoms at (1/2,1/2,0), (1/2,0,1/2), and (0,1/2,1/2)

* Base centered (C). One additional lattice point at the
center of the base of the cell (the so-called C-plane
containing a and b), that is, at (1/2,1/2,0)



14 Bravais lattices

Name Conditions Primitive Base centered | Body centered | Face centered
Tricini arb#c
riclinic a#BEy
. a*b#c
Monoclinic w=vy=090°%p
orth bi a*zb#c
rthomombic w=B = =90°
a=b#c
Tetragonal
Rhombohedral 9= b = ¢
(trigonal) a=p=vy #90°
Hexagonal a=b#c
J a=p=90°%y =120°
a=b=
Cubic




Crystallographic calculations



Structure factor - amplitude and phase of
diffracted wave

e The structure factor is a mathematical function describing the amplitude and phase of a
wave diffracted from crystal lattice planes characterised by Miller indices (hkl)

* The structure factor may be expressed as |
Fia = Fuaexplicnm) = Y. fjexp[2mi(hx; + kyj + 1z;)]

=Y. ficos[2m(hxj+ky;+iz;)|+i ) . fj sin[2a (hxj+ky j+1z;5)]

=A hel + iB hk]

where the sum is over all atoms in the unit cell, x,y;,z; are the positional coordinates of the jth
atom, f; is the scattering factor of the jth atom (is measure of the scattering power of an
isolated atom and is specific for each atom Mg, Ca, Fe etc, their charge state Fe?*, Fe3*, and
radiation, x-rays, neutrons or electrons) a,,, is the phase of the diffracted beam.

 The intensity of a diffracted beam is directly related to the amplitude of the structure factor
IF il = ((Ang)? + (Bry)?)Y?, where as the phase is given by tan (phase angle) = B, ,, /A,

Most recent reference for electrons is Electron diffraction. C. Colliex, J. M. Cowley, S. L. Dudarey,
M. Fink, J. Gjgnnes, R. Hilderbrandt, A. Howie, D. F. Lynch, L. M. Peng, G. Ren, A. W. Ross, V. H.
Smith Jr, J. C. H. Spence, J. W. Steeds, J. Wang, M. J. Whelan and B. B. Zvyagin. International
Tables for Crystallography (2006). Vol. C, ch. 4.3, pp. 259-429 doi:
10.1107/97809553602060000593



Atomic scattering amplitudes for Cu

0° 10° 20° 30° 45° "7 60°  90°
10 : 1 ! ll ll : L

0.5° 1° 1.5°

fX' fN
(107*A)

1 Neutron

. ; ’ ; — ;
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
(sin®)/A A7)

Angular variation of the atomic scattering amplitude f of copper for x-rays, electrons, and neu-
trons (note different scales for electrons). The reflection angles of the upper axis were calculated
with A = 0.07107 nm for x-rays and neutrons, and with A = 0.00251 nm for electrons (see Table
3.1). (Data for x-rays and electrons taken from Doyle, P.A. and Turner, P.S., Acta Crystallogr.,
A24, 390, 1968; data for neutrons taken from Bacon, G.E., Neutron Diffraction, Clarendon Press,
Oxford, 1975.)



REFLEXIONS

Example alpha-Quartz

H R R R R R WL WWWWw W WwWw W W W

O O O O O O O ©O O O O o © oo o o o
e e e e e e e e e e e 2 e e
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The reciprocal lattice concept : 1

A concept is a cognitive unit of meaning - an abstract idea or a mental symbol

The notion of reciprocal vectors was introduced into vector analysis by J. W. Gibbs (1881). The
concept of reciprocal space or reciprocal lattice was adapted by P. P. Ewald to interpret the
diffraction patterns of an orthorhombic crystal (1913). The concept is very useful for metric
calculations and diffraction geometry. Let a, b, ¢ be the elementary translation vectors (i.e.
associated with alpha, beta, gamma) of real space or direct lattice. The reciprocal lattice is defined
by translation vectors a*,b* and c*, which satisfy the following conditions related to the direct
space:

a*.b=a*.c=0 (a*is normal to b and c)
b*.a=b*.c=0 (b* is normal toaand c)
c*.a=c*.b=0 (c*isnormaltoaandb)

and
a*.a=1 (a=1/a* these relations fix the direction and magnitude of a* etc)
b*.b=1 (b=1/b%*)

c*.c=1 (c=1/c*)

From these relations it follows that reciprocal vectors are

a*=(bxc)/a.(bxc) b*=(cxa)/b.(cxa) c*=(axb)/c.(axb) _ i
As volume of the unit cell,V=a. (bxc)=b.(cxa)=c.(axb) sl a L

a*=(bxc)/V b*=(cxa)/V c*=(axb)/V

With magnitudes
la*l = bcsinalpha/V Ib*l=casinbeta/V Ic*l=absingamma/V

where la*| is equal reciprocal of the spacing of (100) planes, similarly for Ib*l and Ic*I for (010) and
(001) .

The roles of direct and reciprocal space many be interchanged: that is the “reciprocal” of the
reciprocal lattice is the direct lattice ! Therefore

a=(b*xc*)/V b=(c* xa*)/V c=(a*xb*)/V
It may be easily verified that that reciprocal of direct triclinic lattice also has triclinic symmetry, but
not is true for all lattice symmetry classes.



— (f)O_|*

Stereogram of direct and reciprocal axes
for a triclinic mineral: anorthite o 93.12; 8 115.91;
v91.26,0* 85.92;5* 6397;v* 87.08°.



The reciprocal lattice concept : 2

Relations for specific symmetries

In monoclinic lattices b* || b while a* and c* are in the
plane (a,c), then:

la*l =1/(a sin beta) Ib*I=1/b Ic*I=1/(c sin beta)

alpha* = gamma* =mn /2 beta* = m— beta

In orthorhombic, tetragonal and cubic lattices a* lla , b*

Il bandc*llc, then:

la*I=1/a Ib*I=1/b Ic*I=1/c

alpha* = beta* = gamma* =mn /2
In trigonal (hexagonal axes - recommended) and

hexagonal lattices c* Il c while a* and b* are in the plane
(a,b), then:

la*l = Ib*I=2/(av3)
gamma* =1 /3

Ic*I = 1/c alpha* = beta* =1 /2

(Note this will different for trigonal lattices on
rhombohedral axes)

Direct and reciprocal lattice
parameters for a monoclinic unit cell.
We notice: (i) b* is normal to the plane
(a, ¢) by definition, and therefore b* ||

. b
b; (i1) @* is normal to b, therefore lies in
the plane (a, ¢), and is normal to c; (iii)
¢* is normal to b, therefore lies b

in the plane (a, ¢), and is normal to a;
(iv) *=p—-(B—7/2)—(B—7/2)
=r—8

Direct and reciprocal

lattice parameters for a trigonal
(hexagonal) unit cell. We notice:

(1) ¢* is normal to the plane (a, b) by
definition, and therefore ¢* || ¢; c
(i) a* is normal to ¢, therefore lies

in the plane (a, b), and is normal to b;

(iii) b* is normal to ¢, therefore lies in

the plane (a, ), and is normal to a;
W)y =y-(y—7n/2)—(y—n/2)
=7 —v=60°.

c*

V—m / 2 ~.



The reciprocal lattice concept : 3

Some useful relationships

1. A lattice vector of the reciprocal lattice r*
r* = ha* + kb* + Ic*
is normal to the the planes with Miller indices (hkl) in the real or direct lattice.
If the h,k,| have small integer values the plane is said to be “low index” plane (e.g. 100).

2. The magnitude of r* (i.e. Ir*I = 1/d,,,) , is equal to the reciprocal of the spacing of the
planes (d,,) of the real lattice with indices (hkl). The d,, is called the “d-spacing” in
angstroms or nanometres.

Proof:

1. The vectors (A-O),(B-0) and (C-O) define the intercepts of the plane (hkl) at A with a/
h, B with b/k and C with c/I. The vectors along the triangular edges of plane (hkl) are
therefore;

(B-A)=b/k-a/h (C-A)=c/l-a/h (C-B)=c/I-b/k

Hence

r*.(B-A) = (ha*+kb*+Ic*).(b/k - a/h) = h/ha.a*- k/kb.b*=1-1=0

as a.a*=b.b*=1 and h/h=k/k=1

and therefore r*.(B-A) = r*.(C-A) = r*.(C-B) =0

Vectors (B-A), (C-A) and (C-B) are in the plane (hkl) and perpendicular to r*

The plane of the family (hkl) nearest
to the origin.

2. Remembering that a dot product AO.r* is equal to the projection of AO on the
direction of r* multiplied by the magnitude of r* . If n=r*/Ir*| is a unit vector parallel to
ON and r¥*, then OA.n is the projection of AO in the direction of n,

diq = OA.n = (a/h). (r*/Ir*l) =h a.a*/h Ir*1 = 1/Ir*| as h/h =a.a*=1



The reciprocal lattice concept : 4

Some useful relationships (continued)

3. Weiss zone law
r* = ha* + kb* + Ic* and d =ua + vb + wc
The plane (hkl) is in the zone [uvw] if r* is perpendicular to direction d.
(ha* + kb* + Ic* ).(ua+vb +wc) =0
hua*.a + kvb*.b + lwc*.c=0
as a*.a=b*.b =c*.c=1

hu+ kv+Ilw=0

Given two planes in the same zone (h1 k1 11) and (h2 k2 12)
Zone directionis u:viw = (k112 -k211) : (11 h2 =12 h1) : (h1 k2 — h2 k1)

4. The angle “phi” between two planes (h1 k1 11) and (h2 k2 12)
r1* = hla* + kl1b* + |1c*
r2* = h2a* + k2b* + |12¢c*

r1*.r2* = Ir1*1 Ir2*| cos (phi)
cos (phi) = r1*.r2* /Ir1*| Ir2*| = (hla* + k1b* + 11c*).(h2a* + k2b* + 12¢*)/(d,; diii2)

d,q =1/ 1 ha* + kb* + Ic*|

d, = 1/ V(h?a*2+k?b*2+|2c*+2klb*c*cos(alpha*)+2lhc*a*cos(beta*)+2hka*b*cos
(gamma*))



Metric Tensor

* The metric tensor is useful to make
crystallographic calculations on the direct
lattice on any symmetry using matrix methods

e The metric tensor M = [?*2 2P ac

b.a b.b b.c
a? abcosy accosf
Triclinic abcosy b? bccosa
ccccc b hecoss oo ] c.a c.b c.c
0 accos B
Monoclinic 0 b* 0
accosff O
a? —4a? 0
Trigonal and hexagonal —1a? a? 0
_0 0
[a2 0 01
Orthorhombic 0 b 0
LO 0 ¢
a2 0 07
Tetragonal 0 a 0
LO 0 cz_
[a> 0 07
Cubic 0 a* 0
0 0 a?




Metric Tensor 2

* The scalar product is two directions is given by

— —

(a.a a.b a.c U, |
[UViWi]|b.a b.b b.c V,
c.a c¢c.b c.c W,

This allows the calculation of the angle between
2 directions and the modulus of a direction

cos (angle) = [UVW1].[UVW?2]/ IUVW1I IlUVW?2|



Reciprocal Metric Tensor

* |n a similar way we can construct a reciprocal
metric tensor [a*.a* a*.b* a*.c*|
b*.a* b*.b* b*.c*

Lc*.a* c*.b* c*.c*

[ a*? a*b* cosy* a*c* cos f* 2 0 0
Triclinic a*b*cosy*  b*? o } Orthorhombic 0 b 0
| a*c*cos ¥ b*c*cosa* c*? [0 0 c**
[ a*? 0  a*c*cosf* a2 0 0
Monoclinic 0 b*? 0 :| Tetragonal 0 a** 0
| a*c*cosp* 0  c*? | 0 0 c*?
a 1a [a*2 0 O
Trigonal and hexagonal 1a*? a*2 0 ] Cubic 0 a* 0
L0 0 c*? 0 0 a*?

* cos (angle) = [hkl1].[hkI2]/ IThkI1l hk]2]



Using reciprocal metric tensor

The crystal direction [# v w] normal to the plane (7 k [) is given by
u at-af ai-ay ai-ay\ [ h
v |= |a%af aj-af aj-ai || k

*o ¥k *o * *O *
W ajcay aj-ay aj-ay| \l



Crystallographic to orthogonal axes

Many calculations are simple and more
familiar in a orthogonal or Cartesian basis

A transformation matrix (CO) crystal to
orthogonal. [

where

V = CO. Vcrystal - UVW
V = transpose (CO™) . V. qar- i
Vi rystal-uvw = transpose (CO™1) . V

Vcrystal-hkl =CO.V

orthogonal
orthogonal
orthogonal

orthogonal



Direction [uvtw]

Determination of direction indices in a the basal plane of an
hexagonal crystal.



[UVW] and [uvtw] in hexagonal axes

For these two vectors to be identical
Ua+Vb+We =ua+vb+td+we

Since the x, y, and u axes are inclined at 120° to one another and a = b = d,

a+b+d=0
Hence Ua+Vb+We=@u—t)a+(@v—1t)b+we
and U=u—t

V=v-t

W=w

These equations are adequate to convert Weber symbols to Millerian zone axis
symbols, but to convert in the opposite direction it is necessary to apply the condition

u+v+t=0
whence U=2u+v
V=u+2v
W=w
so that u=2UﬂV
3
- 2V-U
3
U+Vv
R
w=W.

The condition for the plane (hkl) to lie in the zone [UVW] is hU+kV+IW =0,
which becomes when the equivalent Weber symbol [uvtw] is used

h(u—t)+k(v—t)+lw=0
ie. hu+kv—(h+k)t+Iw = 0.

And if the Miller-Bravais index i is introduced, where h+k+i =0, this equation
becomes

hu+kv+it+1Iw =0,

the condition for the plane (hkil) to lie in the zone [uvtw]. For example the zone
[1213] contains the planes (1010), (0T11), (1212) and the zone [0111] contains the
planes (2110), (1011), (1123).



h+k+i=0

Planes (hkil)

0
rix 1010
Comparison of Miller—Bravais indices and Miller indices of the
forms {1070} and {1120}

Stereogram of the forms

{1010} and {1120} in point group 6
illustrate Miller—Bravais indexing.

Miller-Bravais Miller Miller—Bravais Miller
(1070) (100) (2110) (210)
(0170) (010) (1120) (110)
(T100) (T10) (1270) (120)
(1010) (100) (2110) (210)
(0710) (070) (1120) (170)
(1100) (170) (1210) (120)




‘Cleavage’ and Rhombohedral cells

o=Ca —O<=CO3

The structure of calcite (CaCO3). The primitive rhombohedral unit cell is
shown which contains two formula units of CaCOj5. The cell outlined with weak lines is
the smallest ‘cleavage rhombohedron’ and contains four units of CaCO .



Rhombhedral and hexagonal axes




Rhomboheadral and hexagonal cell

Rhombohedral lattice. The basis of
the rhombohedral cell is labelled ag,
by, cgr, the basis of the hexagonal
centred cell is labelled ay, by, cy
(numerical fractions are calculated
in terms of the ¢y axis). (a) Obverse
setting; (b) the same figure as in

(a) projected along cy.




Obverse and Reverse Rhombhedral cells

Obverse



Obverse and Reverse on hexagonal axes

obverse to reverse
180° rotation in
hexagonal cell

Yob
The triple hexagonal
unit-cell of thetrigonal
R-lattice with axes labelled
for the obverse and reverse
orientations.

The relationship between the rhombohedral and
triple hexagonal unit-cells for the trigonal R-lattice; . .
the right hand diagram shows the rhombohedral The rhombohedral Bravais lattice

unit-cell in perspective.



