

CRYSTAL2PLATE

How does plate tectonics work: From crystal-scale processes to mantle convection with self-consistent plates

Introduction to crystal plasticity: deformation mechanisms, microstructures, and crystal preferred orientations

Andréa Tommasi

Short course on "Microstructures, textures & anisotropy" Geosciences Montpellier (F) - 28 June - 2 July, 2010

Macroscopic and microscopic observations & deformation regimes

Dislocation creep:

- Grain elongation (may be erased by recrystallization)
- Undulose extinction, deformation bands & subgrains (microstructures directely related to dislocations = may be erased by annealing)
- Dynamic recryistallization may produce a bimodal grain size distribution at high stress (porphyroclasts vs. Neoblasts)
- HT: sinuous or polygonal grain boundaries : migration synkinematic grain growth hinder grain size reduction
- Crystallographic preferred orientation (CPO) = preserved even in annealed (statically recrystallized) rocks

Diffusion creep or diffusion-assisted GBS:

- Fine-grained material (µm)
- Weak elongation may exist, but generaly absent
- Absence of intracrystalline deformation features (Undulose extinction, deformation bands & subgrains)
- Absence of CPO

Dislocations move on well-defined crystal planes & directions = crystal deformation has a limited degree of freedom

strain compatibility = rotation of the crystal
 development of a crystal preferred orientation

• parameters controlling CPO evolution during deformation

✓ deformation geometry

 ✓ active slip systems, which depend on: crystal structure temperature deviatoric stress water pressure melt

✓ dynamic recrystallisation

preservation / destruction of CPO & anisotropy?

✓ dynamic recrystallisation

✓ thermal and chemical processes

<u>Géosciences</u> Montpellier	quartz
$ \vec{r} = \vec{r} $ $ \vec{r} = \vec{r}$	<c> = [0001] \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow</c>
Basal	$(0001) \langle 11\overline{2}0 \rangle^+$ Low T, high $\dot{\varepsilon}$
Ist ord. prismatic	$ \{10\overline{10}\} [0001]^{+} \text{ very High } T, \text{ low } \dot{\varepsilon} \\ \{10\overline{10}\} \langle 1\overline{2}10 \rangle^{+} \text{ High } T, \text{ low } \dot{\varepsilon} \\ \{10\overline{10}\} \langle 1\overline{2}13 \rangle^{-} \text{ High } T \text{ low } \dot{\varepsilon} $
2nd ord. prismatic	$\{11\overline{2}0\}[0001]^-$ very High T low $\dot{\epsilon}$
2nd ord. pyramidal	$\{11\overline{2}2\}\langle 11\overline{2}3\rangle^-$ High T, low $\dot{\varepsilon}$

Quartz

Dominant slip system changes with deformation T CPO measured in a synkinematic granite emplaced in the middle crust

<u>Géosciences</u>

T & σ conditions?

ume

RAW DATA 108 389 points

=7500 μm; Map1; Step=15 μm; Grid1140x236

EXTRAPOLATED DATA

|=7500 μm; Map7; Step=15 μm; Grid1140x236

[100],[010] & [001] Olivine pole figures

Processes other than dislocation creep may also form or modify a CPO?

Géosciences Montrellier Mechanical twinning ς *Twinning* = *shear along a pre-defined* crystallographic plane **-**[100] ✓ may be activated @ LT ✓ limited strain K₁₌ (011) a ь - Feldspars - Calcite - Diopside...

Mechanical twinning & CPO: switch between 2 crystal orientations

CITS

um

Magmatic flow: Deformation of a partially crystallized magma

difusion: changes the shape, not the CPO

Recrystallization?

Experimental deformation:
simple shearZhang & Karato (1995), Nature1200°C, γ = 1.1(010)[100]

1300°C, $\gamma = 0.58$

dynamic recrystalisation

Recrystallization & CPO strength

<u>Géosciences</u> Montpellier

CITS

um

Falus et al EPSL 2008

um

recrystallisation : dispersion CPO = decrease in anisotro related to the Hawaii plume? opx-cpx thermometers record no heating!

Dynamic recrystallization:

- faster reorientation of the CPO // imposed shear

- stabilization of the CPO subgrain rotation, nucleation = dispersion CPO migration = concentration CPO

- MgO??

Static recrystallization (annealing)

strong CPO = deformation by dislocation creep
microstructure = static recrystallization & grain growth

um

except for very fine grained mylonites, CPO is always present
undeformed mantle probably does not exist anymore on Earth...

Génsciences

 poorly-known effect
 olivine : no effect if not accompanied by neo-crystallization of olivine (reaction – open system)
 quartz?

Oriented crystallization (reactions & phase transformations)

Partial melting experiments

hornblende + plg = magma + diopside (amphibolite 80% hb)

J. Ramelow, GFZ Potsdam

• CPO evolution during deformation depends on :

✓ deformation geometry

✓ slip systems activity, which depends on:

temperature

deviatoric stress

water

pressure

melt

Géosciences

um

✓ finite strain, but:

• dynamic recrystallisation : dispersion of CPO

• dynamic grain growth : enhancement (preferential growth of crystals in easy glide orientations)

✓ CPO stable for shear strains >4-5

• Thermal and chemical processes do not destroy CPO, but a new deformation may reorient it

CITS

ume

• Open questions:

✓ Deformation mechanisms & slip systems' strength: Temperature, pressure, water....

✓ Recrystallization ?

✓ Development of CPO during diffusion creep?

💯 🚛 🖓 al remark:

0.7

0.6

0.5

0.4

0.3

0

0.2

U

dominant slip system // macroscopic shear
 ✓ only valid for basal slip = olivine

(110)[100] (010) [001] Ζ 2 Simple Shear 2 0 N=1000; J=7.31 \sim DM=2.85 DM=9.17 DM=7.14 DM=2.86 slip system CRSS1 CRSS 2 (110) [001](100) 1 1 simple shear CRSS 2 ($\alpha = 1$) [001]{110} 10 1 <110>{110} 3 1 (110) (010) [100](010) 3 8 [001](010) 8 8 [001] other systems that accomodate less (100)than 5% of the imposed deformation foliation plane Bascou et al. JSG 2002 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9