

CRYSTAL2PLATE

How does plate tectonics work: From crystal-scale processes to mantle convection with self-consistent plates

Introduction to crystal plasticity: deformation mechanisms, microstructures, and crystal preferred orientations

Andréa Tommasi

Short course on "Microstructures, textures & anisotropy" Geosciences Montpellier (F) - 28 June - 2 July, 2010

activated to accommodate the imposed macroscopic strain

JStructGeol 1986

<u>Géosciences</u>

CITS

ume

• The dislocation line separates the sheared volume of the crystal from the non-sheared one

• The Burgers vector is the dislocation motion (shear) direction

How do we observe dislocations?

decoration (olivine: oxyde depots)

Kamchatka xenolith, Soustelle et al. J. Petrol. 2010

 transmission electron microscopy (TEM)

Dislocations : TEM

Using an aperture, one may select

• the diffracted electrons

Dislocations in olivine © H. Couvy, USTLille

Dislocations & energy

• Potential energy = elastic deformation of the lattice around a dislocation

The regions of tension (light) and compression (dark) around an edge dislocation in a simple cubic lattice.

http://zig.onera.fr/~devincre/DisGallery/index.html

Activation energy (formation & glide)

• Activation energy : glide

Dislocation glide: reorganisation of atomic bonds

 \succ f(σ , T)

f (crystal structure): some planes & directions are favored because bonds are weaker

Variation of shear stress, τ , and potential energy, V, with displacement, δ .

motion of dislocationson well-defined crystal planes & directions = crystal deformation has a limited degree of freedom

- strain compatibility = rotation of the crystal
- development of a crystal preferred orientation

Géosciences Montoellier

um

obstacle = grain boundary, another dislocation, impurity...

accumulation of dislocations = tangling = forests increase of the crystal internal energy ≫ hardening

http://zig.onera.fr/~devincre/DisGallery/index.html

Diffusion mechanisms

-Nabarro-Herring creep : intracrystalline diffusion -Coble creep: diffusion along grain boundaries

Vacancies & atoms move in opposite directions (arrows indicate atoms flow, but it is the vacancies that really move along large distances!)

it is the vacancies that move along large distances

CITS

um

An easily observable diffusional process: Grain boundary migration

Static grain growth: octachloropropane Park, Ree & Means, J. Virtual Explorer 2000

um

Jessel & Bons – Simulation using ELLE – J. Virtual Explorer 2000 virtualexplorer.com.au/.../lectures/lec2.html

Does it really exist?

CITS

ume

- experimental evidence = linear relation between stress & strain rate (dislocation glide = $\dot{\epsilon} \propto \sigma^2$)
- absence of crystal preferred orientations...
 + ??

Under which conditions?

Diffusion is a well-understood physical process...

Einstein law (the drunk guy walking...)

 $d = \sqrt{\Gamma a^2 t}$

- *Γ*: frequency of steps
- a : amplitude of the step
- t : observation time
- d : walked distance

$$\Gamma = v.\exp\!\left(-\frac{\Delta G_m}{RT}\right)$$

 Γ = probability of successful atomic jumps v= vibration frequency of the atoms (~10¹³Hz)

 $\Delta G_m = enthalpy reduction ("migration energy)$

Probability of an oscillation with a large enough amplitude : $T = \Gamma$

iénsciences

Jm

$$\Gamma = v.\exp\left(-\frac{\Delta G_m}{RT}\right)$$

 Γ = probability of successful atomic jumps v= vibration frequency of the atoms ($\approx 10^{13}$ Hz) ΔG_m = enthalpy reduction ("migration energy)

 Γ = probability of an oscillation with a large enough amplitude : $T = \Gamma$

Atomic diffusion coefficient

$$D = \frac{1}{2} \Gamma N_v a^2$$
 cm²s⁻¹

 N_v = vacancy concentration (# empty sites/ total # sites) a = interatomic distances

 $< v >= D \frac{F_{ext}}{kT}$

<u>Géosciences</u>

Tableau I. - Forces de Transport Fext

Nature	Expression	Remarques
Gradient de potentiel électrique $E = - d\Phi/dx$	q* E	q [*] charge effective
Gradient de température dT/dx	$-\frac{Q^*}{T}\frac{\mathrm{d}T}{\mathrm{d}x}$	Q* chaleur de transport
Gradient de potentiel chi- mique (seulement la par- tie <u>non idéale</u>)	$-kT\frac{\partial \log \gamma}{\partial x}$	γ coefficient d'activité thermodynamique
Gradient de contrainte $d\sigma/dx$	- dU/dx	U énergie d'interaction élastique dans le champ σ(x)
Force centrifuge	$m\omega^2 r$	m masse molaire effective ω vitesse angulaire

 $v \propto F$ $D \propto \mathrm{ex}$ exp $v \propto$

Usually the 2 processes are associated ... General diffusion creep flow:

$$\dot{\varepsilon} = A \frac{\sigma V}{kTd^2} D_{eff}$$

$$D_{eff} = D_v (1 + \frac{\pi \delta D_b}{dD_v})$$

 $R = k_b N_A$

Géosciences

um

 $D_v = intracrystalline diffusion coeff.$ $D_{b=} grain boundary diffusion coeff$ Db >> Dv A= adimensional constant V = molar volume R = ideal gas constant $N_A = Avogadro constant$ k = Boltzmann constant d = grain size $\delta = grain boundary thickness$

Effective diffusion creep needs small grain sizes & high temperature

Mylonitic limestone – Agly massif, Pyrenees

um

obstacle = grain boundary, another dislocation, impurity...

accumulation of dislocations = tangling = forests increase of the crystal internal energy ≫ hardening

http://zig.onera.fr/~devincre/DisGallery/index.html

How to avoid dislocations pinning? Dislocation reorganisation : recovery

Tilt walls = formed mainly by edge dislocations Subgrain boundary = normal to Burgers vector Rotation axis = normal to Burgers vector & to the normal to the glide plane

2 families of subgrain boundaries = 2 families of slip systems

CITS

um

CITS

ume

TEM observations : subgrains in olivine

Granulite deformation: Dynamic recrystallization by subgrain rotation of plagioclase

mm

cnrs

ume

A 2nd diffusion-assisted recovery and recrystallization process: Grain boundary migration

Jessel & Bons – Simulation using ELLE virtualexplorer.com.au/.../lectures/lec2.html

Deformation followed by static recrystallization in octachloropropane A 2nd diffusion-assisted recovery and recrystallization process: Grain boundary migration

GBM-recrystallisation ^{10 μm} ^{bulging} nucleation grain-boundary migration ^{1 μm}

motor 1: Δ stored elastic energy (ρ of dislocations)
> dynamic recrystallization (synkinematic)
motor 2: decrease in surface energy → grain growth)
> static recrystallization (post-kinematic)

Recrystallization (nucleation) starts in high stress domains of the crystal Enstatite (opx): Recrystallization along kink bands

GBM-recrystallisation

Géosciences Montpellier

Grain boundary area reduction

Olivine Dunitic xenolith Tommasi et al EPSL 2004

Static grain growth: octachloropropane Park, Ree & Means, J. Virtual Explorer 2000

octacloropropane C₃Cl₈

Deformation under ≠ strain rate conditions Park, Ree & Means, J. Virtual Explorer 2000

In the experiments, it is easy, but... may we identify the mechanisms active during and after deformation in natural systems (Earth)?

<u>Géosciences</u> Montaellier

CINIS

um

Macroscopic and microscopic observations & deformation regimes

Dislocation creep:

- Grain elongation
 - May be erased by recrystallization
- Undulose extinction, deformation bands & subgrains (microstructures directely related to dislocations)
- Crystallographic preferred orientation (CPO)
- Dynamic recryistallization may produce a bimodal grain size distribution at high stress (porphyroclasts vs. Neoblasts)
- HT: sinuous or polygonal grain boundaries : migration synkinematic grain growth hinder grain size reduction

Diffusion creep or diffusion-assisted GBS:

- Fine-grained material (µm)
- Weak elongation may exist, but generaly absent
- Absence of intracrystalline deformation features (Undulose extinction, deformation bands & subgrains)
- Absence of CPO

© GFZ Postdam

Quartz: crystals elongation & undulose extinction + recrystallization producing a very fine grained matrix

Quartz: crystals elongation & undulose extinction + recrystallization producing a very fine grained matrix

experimental deformation - Enfield aplite Quartz ~30%, microcline ~35%, oligoclase ~35%; 200µm in average Quartz & feldspar = high strength contrast

CINIS

um

Dell'Angelo & Tullis JStructGeol 1986

■ 60% at 900°C, 10-6/sec, 1200 MPa

CITS

ume

dextral shear plus compression = transpression

Quartz: subgrains + some (low range) grain boundary migration

<u>Géosciences</u> Montaellier cnrs ume

Quartz: subgrains + some (low range) grain boundary migration

Intermediate stress / T regime. Why?

Quartz: grain boundary migration (+ subgrains)

Quartz: grain boundary migration

very high T deformation + annealing (granulite facies). Why?

Quartz: grain boundary migration + subgrains

Superimposed deformations - decreasing T

dislocation to diffusion creep? Under which conditions?

CITS

ume

starting material: Yale albite 10-6/sec, 1200 MPa

Experimentally deformed feldspar aggregate (J. Tullis)

LT dislocation creep, hardening reX bulging: low GB mobility, driving force (stress) = high grain size reduction by continuous reX

olivine – low T (~900°C) deformation Mylonite = basal thrust of the Oman ophiolite

HT deformation of mantle rock (olivine-rich): grain elongation & undulose extinction well-developed subgrains & grain boundary migration = dislocations motion and diffusion active = DISLOCATION CREEP

Stress – strain rate relation in deformation experiments
dominant deformation process

dislocation creep (glide + climb + reX)

$$\dot{\boldsymbol{\epsilon}} = \boldsymbol{A}_d (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_3)^n \exp\left(-\frac{\boldsymbol{Q}_d + \boldsymbol{P}\boldsymbol{V}_d}{\boldsymbol{R} \boldsymbol{T}}\right)$$

diffusion creep (± grain boundary sliding)

$$\dot{\epsilon} = A_{gb} \frac{(\sigma_1 - \sigma_3)}{d^3} \exp\left(-\frac{Q_{gb} + PV_{gb}}{RT}\right)$$

Remember: Experimental points used to define these maps are obtained in a very limited T, strain rate, and grain size range => lots of extrapolation!!!

CITS

ume

