

How to probe the mantle deformation:

naturally deformed mantle rocks, experiments, and seismic anisotropy

Andréa Tommasi Géosciences Montpellier

How can we "see" the mantle deformation?

xenoliths : mm to cm scale

deformation mechanisms

peridotite massifs : m to 10s of km scale

- •deformation repartition, strain localization...
- *interaction with other processes, (melting, fluids, T gradients...)*

•"small" pieces extracted from the shallow mantle (<150 km): cannot be used to map mantle flow

 ✓ "in situ" indirect observations : seismic & conductivity anisotropy

Upper mantle rocks = peridotites

olivine (>50%) + *orthopyroxene* + *clinopyroxene* + *Al*-*rich phase*

Chemical and mineralogical variations in mantle rocks: traditionally ascribed to partial melting, but refertilization also occurs

Mantle xenoliths : mm to cm scale ≻ deformation mechanisms

Dominantly coarse porphyroclastic microstructures

coarse grains : low deviatoric stresses

total crystal strain = sum of shear strains in all available slip systems

Viscoplastic deformation & crystal preferred orientations

dislocation creep = dislocation glide + dynamic recrystallization

polycrystalline ice in-situ deformation: pure shear C. Wilson - Univ. Melbourne, Australia

stress **オ** T **¥** or strain rate **オ**

Measuring Crystal Preferred Orientations (CPO) by indexation of Electron BackScatered Diffraction (EBSD) patterns

HT, low stress deformation: Iherzolite, Tahiti

olivine database: 3 textural >200 samples end-members

✓ dominant [100] slip in the shallow (lithospheric) mantle

HT-LP experimental deformation: simple shear

dominant slip direction : [100] // shear direction & dominant slip plane : (010) // shear plane

Zhang & Karato (1995) Nature

How can we "see" the mantle deformation?

xenoliths : mm to cm scale

deformation mechanisms

peridotite massifs : m to 10s of km scale

- •deformation repartition, strain localization...
- interaction with other processes, (melting, fluids, T gradients...)

•"small" pieces extracted from the shallow mantle (<150 km): cannot be used to map mantle flow

 ✓ "in situ" indirect observations : seismic & conductivity anisotropy

Seismic anisotropy = a tool to probe the mantle deformation

Anisotropy = dependence of a physical property on the direction of sampling

- 8 16 km/sec

Seismic waves velocities vary as a function of:

- the propagation direction (P & S waves)
- the polarization direction

Seismic anisotropy

Seismic waves velocities vary as a function of:

- the propagation direction
- the polarization direction (S waves)

S waves polarization anisotropy - shear wave splitting

Fontaine et al., GJI 2007

anisotropy results from

tion (100) [001] (100) [001] (100) [001] (100) [001] (100) [010] [001] (100) [010] [01] (100) [01] (100) [01] [01] (100) [01] (*layering of materials with very ≠ properties :*

- sediments
- strain-induced layering in metamorphic or magmatic rocks

✓ crust, deep mantle (?)

- aligned cracks, dykes or melt lenses
 ✓ upper crust
 - ✓ middle & lower crust
 - ✓ upper mantle (subduction, rift...)
 - ✓ transition zone, D" (?)

Crystal or Lattice Preferred Orientation (CPO or LPO) of anisotropic minerals :

- ✓ lower crust
- ✓ mantle
- ✓ inner core (?)

deformation plays an essential role in the development of anisotropy

How do we translate seismic anisotropy data into flow patterns?

Simple key to qualitatively "read" seismic anisotropy observations in the SHALLOW MANTLE (>250 km):

in oceanic domains: South Pacific

Tarduno et al. Science 2003

Electrical conductivity anisotropy inferred from long-period MT data: Another tool to map upper mantle deformation?

-114°

-113°

-112

Nazca

1 s

-111

-110'

-17'

-18'

-109

Pacific

-117

-116

-115

-17°

-18'

-19"

-118

resistivity // spreading direction = 1/5 * resistivity // ridge Baba et al. JGR 2006

fast EC direction // fast SKS polarisation

high conductivity & anisotropy below 60km
✓ EC anisotropy = faster H+ diffusion
// olivine [100]

LETTERS

LETTERS

The effect of water on the electrical conductivity of olivine

Duojun Wang^{1,2,3}, Mainak Mookherjee³, Yousheng Xu^{3,4} & Shun-ichiro Karato³

Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere

Takashi Yoshino¹, Takuya Matsuzaki¹, Shigeru Yamashita¹ & Tomoo Katsura¹

electrical conduction controlled by intracrystalline H+ diffusion in olivine

$D^{\rm ol}_{[100]} \approx 10 \times D^{\rm ol}_{[001]} \approx 100 \times D^{\rm ol}_{[010]}$	(MK90)
$D^{\rm ol}_{[100]} \approx 20 \times D^{\rm ol}_{[010]} \approx 40 \times D^{\rm ol}_{[001]}$	(MK98)

electrical conduction: short range, "fast" diffusion polaron migration process Mackwell & Kohlstedt (1990)

3D FE modeling of anisotropic conduction (intracrystalline H+ diffusion) in a peridotite

conductivity // spreading direction
= 5 * conductivity // ridge

Baba et al. JGR 2006

Deformation and anisotropy in the upper mantle : XXI century observations & experimental results

effect of fluids (water and melt) and pressure on the relation between deformation & anisotropy :

- change in deformation mechanisms: ≠ CPO
- ✓ fast anisotropy directions normal to the shear direction

Holtzman et al. Science 2003

+ Couvy et al. EMJ 2005, Mainprice et al. Nature 2005

effect of water on olivine deformation

= fast anisotropy directions normal to the shear direction

but:

- partial melting (H+ incompatible)
- water solubility in olivine > P >
 low water contents in olivine in the shallow mantle

Fast decrease in anisotropy at the bottom of the upper mantle - 200 to 400 km

Transition from dislocation to diffusion creep (no CPO -> no seismic anisotropy) or transition from [100] alig to [001] alig at HD2

transition from [100] slip to [001] slip at HP?

Deformation & anisotropy in the deep mantle

Deformation of olivine polycrystals @ 11GPa & 1400°C

Couvy et al. EJM 2004

σ_1 COMPRES a (010) slip sytem [110] compre 9,E-06 Eo₁₀₀ (1001/010) system С Fo100 pwd Strain Rate (s-1) P ~ 7.2 GPa 7,E-06 spinel 011] compression [001](010) slip syster Fo100 5,E-06 a c (010) slip system 3,E-06 bi-crystal *(*010) 1,E-06 -10 5 0 15 Pressure (GPa) At high pressure:

- higher strain rate in c crystal ✓ [001](010) slip easier than [100](010)
- very low activation volume
- ✓ dislocation creep dominant

Raterron et al, in press

Effect of pressure on olivine deformation

Ab-initio modeling of dislocation core properties: Ph. Carrez, P. Cordier, D. Ferré (Lille)

✓ olivine: easier slip on [100](010) at high pressure

Modeling the deformation & crystal orientation evolution

strain = motion of dislocations on welldefined crystal planes & directions

VPSC: Molinari et al. 1987, Lebensohn & Tomé 1993 Drex: Kaminsky & Ribe 2001, 2003

rock (polycrystal) deformation:

behavior of the aggregate (rock) =
 average of crystals' behaviors

$$\dot{E}_{ij} = \langle \dot{\epsilon}_{ij} \rangle \qquad \Sigma_{ij} = \langle \sigma_{ij} \rangle$$

$$\dot{\boldsymbol{\epsilon}}_{kl} - \dot{\boldsymbol{E}}_{kl} = -\boldsymbol{M}_{ijkl} \cdot (\boldsymbol{\sigma}_{ij} - \boldsymbol{\Sigma}_{ij})$$

input parameters: slip systems' strength, initial texture, and macroscopic sollicitation (stress or velocity gradient tensor) *output: evolution of crystallographic orientations* and macroscopic response (strain rate or stress tensor)

within a grain (crystal):

Crystal plasticity modeling based on calculated Peierls stresses for olivine slip systems @ 10 GPa

Mainprice et al. Nature, 2005

Global P-wave anisotropy in the deep upper mantle

Global S-wave anisotropy in the deep upper mantle

Model prediction for horizontal flow:

Montagner & Kennett GJI, 1996

olivine deformation = f(P) change in dominant slip direction from [100] to [001]

- strong decrease in seismic anisotropy with depth
- fast P-wave propagation & fast S-wave polarisation directions in the deep upper mantle normal to shallow ones
- global 1D seismic anisotropy data : horizontal shearing accommodated by dislocation creep

Transition from [100] slip to [001] slip in the deep upper mantle?

Experiments : P ~ 6-7 GPa (~200 km) or P ~ 3 GPa (~90 km) : role of stress & water content?

LPO measurements on naturally deformed peridotites:

- sp-bearing samples : [100] only (<70 km)
- garnet-bearing peridotites : essentially [100], except:

high-pressure massifs (subduction)

Mizukami et al. Nature 2004

Below-slab anisotropy

Compilation by M. Long & P. Silver + some additional data

Anisotropy & deformation in the deep mantle

D"-Layer anisotropy: strain-induced post-perovskite CPO and/or compositional layering?

LETTERS

Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO₃ minerals

Philippe Carrez^{1*}, Denise Ferré^{1*} & Patrick Cordier^{1*}

polycrystal plasticity models -> post-perovskite CPO D" anisotropy

Mantle deformation & anisotropy

in the lithospheric mantle and asthenosphere (< 200 km):

- ✓ deformation by dislocation creep with dominant [100] slip
 - strong seismic & electrical anisotropy (+ thermal & mechanical!)
 - fast seismic directions map flow
 - delay times = path length + orientation flow plane/direction relative to propagation, not finite strain
- >200 km : due to $P + H_20$ (?) in olivine: [001] slip
 - seismic anisotropy decreases, fast directions normal to flow direction
 - explain trench-// SKS splitting at subduction zones?
- deeper in the mantle : deformation mechanisms of main mineral phases?
 D" strongly anisotropic : post-perovskite CPO and compositional layering?